#include <tnt_linalg.h>
Public Member Functions | |
SVD (const Matrix< Real > &Arg) | |
void | getU (Matrix< Real > &A) |
void | getV (Matrix< Real > &A) |
void | getSingularValues (Vector< Real > &x) |
void | getS (Matrix< Real > &A) |
double | norm2 () |
double | cond () |
int | rank () |
Singular Value Decomposition.
For an m-by-n matrix A with m >= n, the singular value decomposition is an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and an n-by-n orthogonal matrix V so that A = U*S*V'.
The singular values, sigma[k] = S[k][k], are ordered so that sigma[0] >= sigma[1] >= ... >= sigma[n-1].
The singular value decompostion always exists, so the constructor will never fail. The matrix condition number and the effective numerical rank can be computed from this decomposition.
(Adapted from JAMA, a Java Matrix Library, developed by jointly by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama).
double TNT::Linear_Algebra::SVD< Real >::cond | ( | ) | [inline] |
Two norm of condition number (max(S)/min(S))
void TNT::Linear_Algebra::SVD< Real >::getS | ( | Matrix< Real > & | A | ) | [inline] |
Return the diagonal matrix of singular values
void TNT::Linear_Algebra::SVD< Real >::getSingularValues | ( | Vector< Real > & | x | ) | [inline] |
Return the one-dimensional array of singular values
double TNT::Linear_Algebra::SVD< Real >::norm2 | ( | ) | [inline] |
Two norm (max(S))
int TNT::Linear_Algebra::SVD< Real >::rank | ( | ) | [inline] |
Effective numerical matrix rank