TNT::Linear_Algebra::SVD< Real > Class Template Reference

#include <tnt_linalg.h>

Public Member Functions

 SVD (const Matrix< Real > &Arg)
void getU (Matrix< Real > &A)
void getV (Matrix< Real > &A)
void getSingularValues (Vector< Real > &x)
void getS (Matrix< Real > &A)
double norm2 ()
double cond ()
int rank ()

Detailed Description

template<class Real>
class TNT::Linear_Algebra::SVD< Real >

Singular Value Decomposition.

For an m-by-n matrix A with m >= n, the singular value decomposition is an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and an n-by-n orthogonal matrix V so that A = U*S*V'.

The singular values, sigma[k] = S[k][k], are ordered so that sigma[0] >= sigma[1] >= ... >= sigma[n-1].

The singular value decompostion always exists, so the constructor will never fail. The matrix condition number and the effective numerical rank can be computed from this decomposition.

(Adapted from JAMA, a Java Matrix Library, developed by jointly by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama).


Member Function Documentation

template<class Real >
double TNT::Linear_Algebra::SVD< Real >::cond (  )  [inline]

Two norm of condition number (max(S)/min(S))

template<class Real >
void TNT::Linear_Algebra::SVD< Real >::getS ( Matrix< Real > &  A  )  [inline]

Return the diagonal matrix of singular values

Returns:
S
template<class Real >
void TNT::Linear_Algebra::SVD< Real >::getSingularValues ( Vector< Real > &  x  )  [inline]

Return the one-dimensional array of singular values

template<class Real >
double TNT::Linear_Algebra::SVD< Real >::norm2 (  )  [inline]

Two norm (max(S))

template<class Real >
int TNT::Linear_Algebra::SVD< Real >::rank (  )  [inline]

Effective numerical matrix rank

Returns:
Number of nonnegligible singular values.

The documentation for this class was generated from the following file:
 All Data Structures Namespaces Functions Variables Typedefs

Generated on 22 Sep 2009 for Cali Cam by  doxygen 1.6.1